

MAT8034: Machine Learning

Independent components analysis

Fang Kong

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Part of slide credit: Stanford CS229

Motivation

- Consider the cocktail party problem
 - *d* speakers are talking simultaneously in a room
 - Place *d* microphones at different locations
 - Each microphone records a different combination of the speakers' voices
- Can we recover the original speech signals of each speaker?

Problem formulation

- Source $s \in \mathbb{R}^d$
- Observation $x \in \mathbb{R}^d$

Model the observation and source
x = As

• A is the mixing matrix

Problem formulation (cont'd)

Now we have multiple observations

$$\{x^{(i)}; i = 1, \dots, n\}$$

• The i-the data satisfies
$$x^{(i)} = As^{(i)}$$

- Illustration
 - x_j^i is the acoustic reading recorded by microphone j at time i
 - s_jⁱ is the sound that speaker j was uttering at time i

Objective

• Given observation x^i , can we recover the sources?



•
$$W = \begin{bmatrix} -w_1 & -w_1 \\ \vdots \\ -w_d^T & -w_d^T \end{bmatrix}$$
 then $s_j^i = W_j^{\mathsf{T}} x^i$

ICA ambiguities

• Only given x, are there cases where W is impossible to recover?

• Only given x, are there cases where W is impossible to recover?

How about the permutation?

$$P = \left[\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Given an observation x, can you distinguish between Ws and PWs'?

• Only given x, are there cases where W is impossible to recover?

- How about the scaling?
 - Given an observation x, can you distinguish between Ws and (2W)(0.5s)?
- Permutation and scaling do not matter for most applications

• Only given x, are there cases where W is impossible to recover?

- How about the rotational symmetry?
 - Consider an example with n = 2, s ~ N(0, I)
 - Now we observe x = As

 $E_{s \sim \mathcal{N}(0,I)}[x] = E[As] = AE[s] = 0$ $Cov[x] = E_{s \sim \mathcal{N}(0,I)}[xx^{T}] = E[Ass^{T}A^{T}] = AE[ss^{T}]A^{T} = A \cdot Cov[s] \cdot A^{T} = AA^{T}$

• Thus $x \sim N(0, AA^{\top})$

• Only given x, are there cases where W is impossible to recover?

- How about the rotational symmetry?
 - Consider an example with n = 2, s ~ N(0, I)
 - Now we observe x = As
 - Thus $x \sim N(0, AA^{\top})$
 - Consider another generation x' = A's
 - We can construct A' = AR with $RR^{\top} = R^{\top}R = I$
 - Can we distinguish x' from x?

• Only given x, are there cases where W is impossible to recover?

So long as the data is not Gaussian, it is possible to recover the d independent sources with enough data

ICA algorithm

Maximum likelihood

Construct a joint distribution of the sources

$$p(s) = \prod_{j=1}^{d} p_s(s_j)$$
 Imply
independence

• Recall that the observation follows x = As, $s = A^{-1}x \coloneqq Wx$

- What's the probability of x?
 - Is $p_x(x) = p_s(Wx)$?

Counterexample

- Is $p_x(x) = p_s(Wx)$?
 - Suppose: $s \sim \text{Uniform}[0,1] \Rightarrow p_s(s) = 1_{[0 \le x \le 1]}$ A = 2, so x = 2s
 - Then $x \sim \text{Uniform}[0,2]$
 - $p_x(x) = 0.5 \cdot 1_{[0 \le x \le 2]}$
 - But:

 $p_s(Wx) = p_s(0.5x) = 1$, which is incorrect

Intuition: This ignores how the distribution stretches or compresses in space

Densities and linear transformations

The correct formulation

$$p_x(x) = p_s(Wx) \cdot |W| \hspace{0.5cm} | \hspace{0.5cm} ext{where} \hspace{0.5cm} W = A^{-1}$$

- Accounts for scaling/stretching of the space
- For multi-dimensional vectors

$$| \, p_x(x) = p_s(A^{-1}x) \cdot |\det(A^{-1})| = p_s(Wx) \cdot |W|$$

Intuition

- Let $C_1 = [0,1]^d$ (unit hypercube)
- Let $C_2 = \{As : s \in C_1\}$
- Then:
 - $Vol(C_2) = |\det(A)|$
- If $s \sim \text{Uniform}(C_1)$, then:

•
$$p_x(x) = \frac{1}{Vol(C_2)} = \frac{1}{\det(A)} = |\det(W)|$$

Back to maximum likelihood

- Construct a joint distribution of the sources $p(s) = \prod_{j=1}^{d} p_s(s_j)$
- Recall that the observation follows x = As, $s = A^{-1}x \coloneqq Wx$
- What's the probability of x? • $p_x(x) = p_s(Wx)|W|$? \longrightarrow $p(x) = \prod_{j=1}^d p_s(w_j^T x) \cdot |W|$ How to specify a density for s? Cannot be gaussian

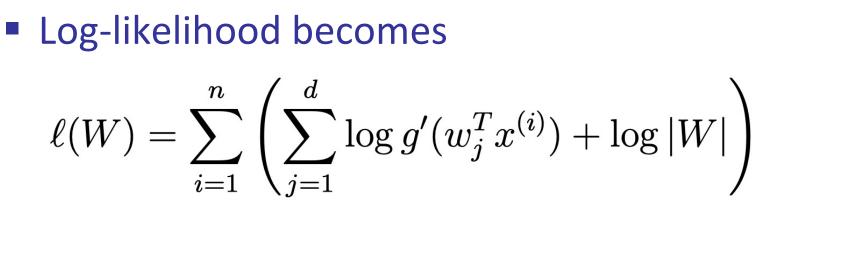
Specify a density for sources

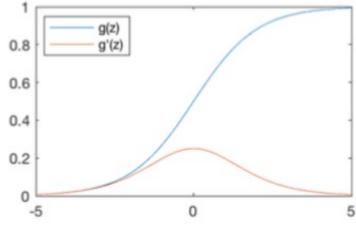
The density function is the derivative of the cumulative distribution function (cdf)

$$F(z_0) = P(z \le z_0) = \int_{-\infty}^{z_0} p_z(z) dz$$
$$p_z(z) = F'(z)$$

- We can first specify a cdf (a monotonic function that increases from zero to one)
 - Sigmoid?

Selecting Sigmoid





 $g(z) = \frac{1}{1 + e^{-z}}$

g'(z) = g(z)(1 - g(z))

Using stochastic gradient ascent to optimize

Summary

- Independent components analysis (ICA)
 - Motivation: detect independent source feature
 - ICA ambiguities (permutation, scale, rotational symmetry)
 - Algorithm: maximum likelihood to find the unmixing matrix