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Motivation

§ Consider the cocktail party problem
• d speakers are talking simultaneously in a room
• Place d microphones at different locations
• Each microphone records a different combination of the speakers’ 

voices

§ Can we recover the original speech signals of each speaker?



Problem formulation

§ Source 𝑠 ∈ ℝ!

§ Observation 𝑥 ∈ ℝ!

§ Model the observation and source

§ A is the mixing matrix



Problem formulation (cont’d)

§ Now we have multiple observations

§ The i-the data satisfies

§ Illustration
§ 𝑥!" is the acoustic reading recorded by microphone j at time i

§ 𝑠!" is the sound that speaker j was uttering at time i



Objective

§ Given observation 𝑥", can we recover the sources? 

§ How?
§ 𝑠 = 𝐴#$𝑥 ≔ 𝑊𝑥

§ then 𝑠!" = 𝑊!%𝑥"

Unmixing 
matrix



ICA ambiguities
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To what degree can W be recovered?

§ Only given 𝑥, are there cases where 𝑊 is impossible to recover?



To what degree can W be recovered?

§ Only given 𝑥, are there cases where 𝑊 is impossible to recover?

§ How about the permutation? 

§ Given an observation 𝑥, can you distinguish between 𝑊𝑠 and 𝑃𝑊𝑠’?



To what degree can W be recovered?

§ Only given 𝑥, are there cases where 𝑊 is impossible to recover?

§ How about the scaling? 
§ Given an observation 𝑥, can you distinguish between 𝑊𝑠 and 
(2𝑊)(0.5𝑠)?

§ Permutation and scaling do not matter for most applications



To what degree can W be recovered?

§ Only given 𝑥, are there cases where 𝑊 is impossible to recover?

§ How about the rotational symmetry? 
§ Consider an example with 𝑛 = 2, s ∼ 𝑁(0, 𝐼)
§ Now we observe 𝑥 = 𝐴𝑠

§ Thus 𝑥 ∼ 𝑁(0, 𝐴𝐴%)



To what degree can W be recovered?

§ Only given 𝑥, are there cases where 𝑊 is impossible to recover?

§ How about the rotational symmetry? 
§ Consider an example with 𝑛 = 2, s ∼ 𝑁(0, 𝐼)
§ Now we observe 𝑥 = 𝐴𝑠
§ Thus 𝑥 ∼ 𝑁(0, 𝐴𝐴%)

§ Consider another generation 𝑥′ = 𝐴′𝑠
§ We can construct 𝐴& = 𝐴𝑅 with 𝑅𝑅% = 𝑅%𝑅 = 𝐼
§ Can we distinguish 𝑥′ from 𝑥? 



To what degree can W be recovered?

§ Only given 𝑥, are there cases where 𝑊 is impossible to recover?

§ So long as the data is not Gaussian, it is possible to recover the 𝑑
independent sources with enough data



ICA algorithm
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Maximum likelihood

§ Construct a joint distribution of the sources

§ Recall that the observation follows 𝑥 = 𝐴𝑠, 𝑠 = 𝐴#$𝑥 ≔ 𝑊𝑥

§ What’s the probability of 𝑥?
§ Is 𝑝' 𝑥 = 𝑝((𝑊𝑥)?

Imply 
independence 



Counterexample

§ Is 𝑝% 𝑥 = 𝑝&(𝑊𝑥)?
§ Suppose:
𝑠 ∼ Uniform[0,1] ⇒ 𝑝((𝑠) = 1[*+ '+$]
𝐴 = 2, so 𝑥 = 2𝑠

§ Then 𝑥 ∼ Uniform[0,2]
§ 𝑝' 𝑥 = 0.5 ⋅ 1[*+ '+ -]
§ But:
𝑝((𝑊𝑥) = 𝑝((0.5𝑥) = 1, which is incorrect

§ Intuition: This ignores how the distribution stretches or 
compresses in space



Densities and linear transformations

§ The correct formulation

§ Accounts for scaling/stretching of the space

§ For multi-dimensional vectors



Intuition

§ Let 𝐶$ = 0,1 !(unit hypercube)
§ Let 𝐶' = {𝐴𝑠 ∶ 𝑠 ∈ 𝐶$}
§ Then:

§ 𝑉𝑜𝑙(𝐶-) = |det(𝐴)|

§ If 𝑠 ∼Uniform(𝐶$), then:

§ 𝑝'(𝑥) =
$

./0 1!
= $

234(6)
= |det(𝑊)|



Back to maximum likelihood

§ Construct a joint distribution of the sources

§ Recall that the observation follows 𝑥 = 𝐴𝑠, 𝑠 = 𝐴#$𝑥 ≔ 𝑊𝑥

§ What’s the probability of 𝑥?
§ 𝑝' 𝑥 = 𝑝( 𝑊𝑥 |𝑊|?

How to specify a density for 𝑠?
Cannot be gaussian



Specify a density for sources

§ The density function is the derivative of the cumulative 
distribution function (cdf)

§ We can first specify a cdf (a monotonic function that increases 
from zero to one)
§ Sigmoid? 



Selecting Sigmoid

§ Log-likelihood becomes

§ Using stochastic gradient ascent to optimize



Summary

§ Independent components analysis (ICA)
§ Motivation: detect independent source feature
§ ICA ambiguities (permutation, scale, rotational symmetry)
§ Algorithm: maximum likelihood to find the unmixing matrix


