MAT8034: Machine Learning

Independent components analysis

Fang Kong
https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Part of slide credit: Stanford CS229


https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Motivation

» Consider the cocktail party problem
* d speakers are talking simultaneously in a room
* Place d microphones at different locations

* Each microphone records a different combination of the speakers’
voices

" Can we recover the original speech signals of each speaker?



Problem formulation

= Source s € R?

= Observation x € R?

= Model the observation and source

r = As

= Ais the mixing matrix



Problem formulation (cont’d)

" Now we have multiple observations

{2®:5=1,...,n}
» The i-the data satisfies (9 = As(®

® ||lustration

. xji is the acoustic reading recorded by microphone j at time |

. Sji is the sound that speaker j was uttering at time i



Objective

" Given observation x*, can we recover the sources?

" How?
Unmixing
s s = A 1y = Wx matrix
- fwf{ -
= W= 5 then s; = W}-Tx‘
_ wg .




ICA ambiguities



To what degree can W be recovered?

" Only given x, are there cases where W is impossible to recover?



To what degree can W be recovered?

" Only given x, are there cases where W is impossible to recover?

" How about the permutation?

P =

D =k D
€ T ik
=t 5

= Given an observation x, can you distinguish between Ws and PIWs’?



To what degree can W be recovered?

" Only given x, are there cases where W is impossible to recover?

" How about the scaling?

" Given an observation x, can you distinguish between Ws and
(2W)(0.5s5)?

" Permutation and scaling do not matter for most applications



To what degree can W be recovered?

" Only given x, are there cases where W is impossible to recover?

" How about the rotational symmetry?
* Consider an example withn = 2,s ~ N(0O, 1)
* Now we observe x = As

ESNN(O,I) [SE] — E[AS] — AE[S =0
Cov[z] = Esonon[zz’] = E[Ass” A'] = AE[ss"]A" = A- Cov[s] - A" = AA"

= Thusx ~ N(0,44")



To what degree can W be recovered?

" Only given x, are there cases where W is impossible to recover?

" How about the rotational symmetry?
" Consider an example withn = 2,s ~ N(0,1)
" Now we observe x = As
" Thus x ~ N(0,4A")

= Consider another generation x’ = 4's
= We can construct A’ = ARwithRR" =R'R =1
= Can we distinguish x’ from x?



To what degree can W be recovered?

" Only given x, are there cases where W is impossible to recover?

» So long as the data is not Gaussian, it is possible to recover the d
independent sources with enough data



ICA algorithm

13



Maximum likelihood

" Construct a joint distribution of the sources

d
p(s) = Hps(sj) inde:one]fm:jyence
j=1

= Recall that the observation follows x = As, s = A~ 1x = Wx

" What's the probability of x?
" Is py(x) = ps(Wx)?



Counterexample

" Is py(x) = ps(Wx)?

= Suppose:
s ~ Uniform[0,1] = ps(s) = 1jp< x<1]
A=2,sox =2s

* Then x ~ Uniform|[0,2]

" Dx(x) = 0.5 1jp< x< 2

= But:
p(Wx) = p,(0.5x) = 1, which is incorrect

" |ntuition: This ighores how the distribution stretches or
compresses in space



Densities and linear transformations

= The correct formulation

pe(z) =ps(Wex) - |W|| where W = A1

= Accounts for scaling/stretching of the space

= For multi-dimensional vectors

pz(z) = ps(A~ ) - [det(A )| = ps(Wz) - [W|




Intuition

Let C; = [0,1]%(unit hypercube)
let C, = {As: s € (4}

Then:

" Vol(C,) = |det(A)]

If s ~Uniform(C;), then:

_ _ 1 1
Px(x) = Vol(C,)  det(A)

= |det(W)|



Back to maximum likelihood

" Construct a joint distribution of the sources

p(s) = HPS(SJ')

= Recall that the observation follows x = As, s = A~ 1x = Wx

" What's the probability of x? d
- Px(X) — pS(Wx)IWl? | > p(a:) — HpS(w;rx) ' |W|

j=1

How to specify a density for s?
Cannot be gaussian



Specify a density for sources

" The density function is the derivative of the cumulative
distribution function (cdf)

F(z) = P(z < z) = [ p.(z
p.(2) = F'(2)

" We can first specify a cdf (a monotonic function that increases
from zero to one)

= Sigmoid?



Selecting Sigmoid

9(2)

" | og-likelihood becomes

Z (Zlogg T g0 —|—10g|W|) |

1

g(z)= 1 +e72

g'(z)= g(z)(1-g(2))

" Using stochastic gradient ascent to optimize



Summary

" Independent components analysis (ICA)
" Motivation: detect independent source feature
= |CA ambiguities (permutation, scale, rotational symmetry)
" Algorithm: maximum likelihood to find the unmixing matrix



